2'-p-HYDROXYBENZOYL MUSSAENOSIDIC ACID, A NEW IRIDOID GLUCOSIDE FROM *VITEX NEGUNDO*.

C. K. SEHGAL, S. C. TANEJA, K. L. DHAR and C. K. ATAL

Regional Research Laboratory (CSIR), Jammu-180 001, India

(Revised received 26 June 1981)

Key Word Index—Vitex negundo; Verbenaceae; iridoid; 2'-p-hydroxybenzoyl mussaenosidic acid.

Abstract—Ethanolic extract of the leaves of *Vitex negundo* yielded a new iridoid named 2'-p-hydroxybenzoyl mussaenosidic acid. The structure was established on the basis of chemical and spectral data.

INTRODUCTION

Vitex negundo is well known for its medicinal value [1]. Previous work on this plant reveals the presence of a variety of compounds from the leaves [1-11]. V. negundo and V. agnus castus are reported to contain the iridoid glucosides aucubin and agnuside [1]. We now report the presence of a new iridoid glycoside in the leaves of V. negundo which has been assigned the structure 2'-p-hydroxybenzoyl mussaenosidic acid (1).

RESULTS AND DISCUSSION

Chromatography of the ethanolic extract of the defatted leaves of Vitex negundo resulted in the isolation of a minor component, crystallized from MeOH, mp 160-162°. MS (FD) showed a molecular ion at m/z 496 which corresponds to the molecular C₂₃H₂₈O₁₂. Preliminary chemical tests confirmed its nature as an iridoid glucoside and revealed the presence of a carboxylic function. Acid hydrolysis gave glucose and an acid (mp 213-214°). The latter was identified as p-hydroxybenzoic acid. The UV spectrum (λ_{max}^{MeOH} nm:258) also suggests the presence of a p-hydroxybenzoic acid moiety in 1. The ¹H NMR spectrum of 1 displayed a singlet at δ 1.20 integrating for three protons due to the methyl group attached to the carbon-bearing oxygen function. A doublet at 5.40 (J = 3.3 Hz) was assigned to the C-1 proton. Two doublets (each 2H, $J = 8.5 \,\mathrm{Hz}$) centred at 6.87 and 7.76 respectively were assigned to the AB protons of the benzene ring of the p-hydroxybenzoyl moiety. A weak doublet at 7.07 (1H, J = 1.0 Hz) was assigned to the C-3 proton which is β to the carbonyl function.

Acetylation of 1 under mild conditions formed a tetra-acetate (2) mp 120–121°. The ¹H NMR spectrum of the acetate displayed signals between $\delta 2.0$ –2.20 for three acetyl groups of the glucose moiety and one signal at 2.40 (3H, s) for the aromatic acetyl group of the p-hydroxybenzoyl moiety. This showed that the p-hydroxybenzoyl moiety is attached to the glucose and not to the basic skeleton.

Treatment of 2 with diazomethane gave the methyl ester (3) mp 100–101°. ¹H NMR spectrum displayed, among other signals, a three proton singlet at $\delta 3.33$ for the methyl group of the carbomethoxy moiety.

1 R = R = H2 R = COMe, R' = H

3 R = COMe, R' = Me

Alkaline hydrolysis of the iridoid (1) gave two compounds which were separated by CC. One of them was identified as p-hydroxybenzoic acid. The other compound (4) which was isolated as an amorphous powder was converted into its methyl ester (5) by treatment with diazomethane. The elemental analysis of 5 corresponded to molecular formula C₁₇H₂₆O₁₀. The ¹H NMR spectrum of compound 5 displayed a signal at $\delta 1.20$ (3H, s) for a tertiary methyl. A double doublet at 2.20 (J = 10 Hz and 3.3 Hz) was assigned to the C-9 proton. A sharp doublet at 5.40 (J = 3.3 Hz) was assigned to the C-1 proton and a singlet for three protons at 3.63 was observed for the methyl protons of the carbomethoxy grouping. A weak doublet at 7.30 (J = 1.0 Hz) was assigned to the C-3 proton.

Compound 5 on acetylation with Ac_2O and pyridine gave a tetra-acetate (6) mp 124°. The tetra-acetate (6) when further treated with the acetylating mixture in the presence of BF₃, furnished a penta-acetate (7) mp 116–118°.

The physical and spectral data for compounds 5, 6 and 7 matches well with the data for mussaenoside 5 and its acetate 6 (mp 124-126°), an iridoid glucoside isolated from the leaves of Mussaenda parviflor, by Takeda et al. [12]. This identification was confined by the comparison of 5 and 6 with the authentic samples of mussaenoside and its acetate which showed complete identity in all respects (TLC, mmp and IR).

From these studies it is obvious that compound 1 is the *p*-hydroxybenzoyl ester of the mussaenoside and there is a carboxylic acid group instead of carbomethoxy group at C-4. The *p*-hydroxybenzoyl group is linked at C-2' of the glucose moiety, as shown by the 13 C NMR spectra of 1 and its acetate 2. This was corroborated by the assignments of C-1' (95.9), C-2' (77.3) and C-3' (74.1). The benzoylation effect for C-1', C-2' and C-3', by comparison with the unbenzoylated product, is ca - 3.5, +3.0, -3.0 respectively. The chemical shift values for the C-8, C-9 and C-10 carbons clearly indicates that the tertiary

hydroxyl is β at C-8 when compared with other known compounds of similar nature [13].

The structure has been further confirmed by its mass spectral fragmentation pattern which is given in Scheme 1.

EXPERIMENTAL

All mps are uncorr. The leaves of Vitex negundo L. (Herbarium no. 11607) were collected locally. The air-dried leaves were first defatted and extracted with CHCl₃ followed by EtOH. The EtOH extract was dried and then subjected to CC over Si gel (2.5 kg) and eluted with EtOAc-MeOH mixtures. Compound 1 was obtained from EtOAc-MeOH (19:1), crystallized from MeOH as white needles, mp 160–162°, $C_{23}H_{28}O_{12}$ [α]_D²⁴ –117.6° (MeOH; c 3%). UV λ_{max}^{MeC} nm: 258; IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3300, 1700, 1680, 1640, 1610, 1590, 1430, 1410, 1370, 1310, 1255, 1220, 1065, 1020, 980, 940, 860, 770, 680: ¹H NMR (DMSO- d_6): δ 1.20 (3H, s, H-10), 2.20 (1H, dd, J = 10 Hz, 3.3 Hz, H-9), 5.40 (1H, d, J = 3.3 Hz, H-1), 6.87 (2H, d, J = 8.5 Hz, ArH-3" and H-5"), 7.07 (1H, d, J = 1.0 Hz, H-3, 7.76 (2H, d, J = 8.5 Hz, ArH-2'' and 6''). MS m/3 (rel. int.): $496[M^+]$ (85), 478 (10), 283 (100), 196 (24), 180 (5), 178 (33), 170 (17), 152 (3), 138 (4).

Wieffering field test for iridoids [14]. Compound 1 (5 mg) was added to 1 ml of reagent, prepared by mixing HOAc (10 ml) CuSO₄ (1.0 ml of 0.2% soln) and conc HCl (0.5 ml). The mixture was heated over a small flame. After a few seconds a light blue colour was obtained.

Scheme 1.

C-atom	1	2 ;	Multiplicity
1	93.5	92.8	S
3	148.6	149.5	d
4	112.2	112.6	S
5	29.7	29.4	d
6	28.9	28.4	t
7	41.2	41.5	t
8	77.7	78.9	S
9	50.5	50.9	d
10	24.1	24.0	q
11	167.1*	166.9	s
1'	95.9	95.1	d
2'	77.3	72.3	d
3'	74.1†	70.8	d
4'	70.1	68.3	d
5'	73.1†	72.1	d
6'	60.8	61.6	t
1"	120.5	127.0	s
2"	131.2	131.7	d
3"	114.9	122.3	d
4"	161.5	154.1	d
5"	114.9	122.3	d
6"	131.2	131.7	d
C=O	164.6*	163.8	S
-OCOCH ₃		21.1, 20.7,	
000011		20.6	q
-OÇOCH ₃	_	170.2, 169.4, 170.7, 171.1	s
		•	

Table 1. ¹³C NMR chemical shifts of 2'-p-hydroxybenzoyl mussaenosidic acid (1) and its tetra-acetate (2)

Acetylation of 1. Treatment of 1 with Ac₂O-pyridine gave the tetra-acetate (2) crystallized from EtOAc-petrol as colourless needles mp 120–121°, analysed for $C_{31}H_{36}O_{16}$. ¹H NMR (CDCl₃): δ1.30 (3H, s, H–10), 2.0–2.20 (9H, 3s, 3 × OCOMe), 2.40 (3H, s, Ar-OCOMe), 3.8–5.20 (m-CH₂ and CH-OAc of glucose moiety), 5.40 (1H, d, J = 3.3 Hz, H–1), 7.10 (2H, d, J = 8.5 Hz, Ar H–3" and H–5"), 7.30 (1H, s, H–3), 8.0 (2H, d, J = 8.5 Hz, Ar H–2" and H–6").

Methylation of 2. Treatment of 2 with CH₂N₂ gave 3 as fine colourless meedles from EtOAc-petrol, mp 100-101°, analysed for C₃₂H₃₈O₁₆. ¹H NMR (CDCl₃): δ1.3 (3H, s, H-10), 1.90-2.20 (9H, 3s, $3 \times$ OCOMe), 3.33 (3H, s, COOMe), 5.40 (1H, d, J = 3.3 Hz, H-1), 7.10 (2H, d, J = 8.5 Hz, Ar H-3" and H-5"), 7.3 (1H, s, H-3), 7.9 (2H, d, J = 8.5 Hz, Ar H-2" and H-6").

Alkaline hydrolysis of 1. Compound 1 (80 mg) was refluxed with methanolic KOH for 30 min. After usual work-up it gave a mixture of two compounds. Compound 4 (30 mg) was separated by CC over Si gel as a colourless powder, analysed for $C_{16}H_{24}O_{10}$.

Methylation of 4. Treatment of 4 with CH₂N₂ gave a white powder (5), analysed for C₁₇H₂₆O₁₀: $[\alpha]_2^{14}$ -114° (MeOH; c 0.9%). UV $\lambda_{\rm meOH}^{\rm meOH}$ nm: 238; IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3400, 1695, 1640; ¹H NMR (DMSO- d_6): δ 1.20 (3H, s, ter-Me), 2.20 (1H, dd, J = 10.0 Hz and 3.3 Hz, H-9); 3.63 (3H, s, COOMe), 5.40 (1H, d, d, d = 3.3 Hz, H-1), 7.30 (1H, d, d = 1.0 Hz, H-3).

Acetylation of 5. Compound 5 with Ac2O-pyridine gave a

tetra-acetate (6) crystallized from MeOH mp 124–126°, analysed for $C_{25}H_{34}O_{14}$. UV λ_{max}^{MeOH} nm: 237; IR ν_{max}^{KBr} cm⁻¹: 1750, 1705, 1640: ¹H NMR (CDCl₃): δ 1.33 (3H, s, H-10), 1.92–2.09 (12H, $4 \times OCOMe$), 2.31 (1H, dd, J = 9.5 Hz, and 3.0 Hz, H-9), 3.03 (1H, m, H-5), 3.70 (3H, s, COOMe), 5.33 (1H, d, J = 3.0 Hz, H-1), 7.34 (1H, d, J = 1.0 Hz, H-3).

Treatment of 6 with Ac₂O-BF₃. To a soln of 6 (40 mg) in Ac₂O was added BF₃-etherate (5 drops) and the mixture was allowed to stand at room temp. for 2 min. Ice-cold H₂O was added and the reaction mixture was extracted with CHCl₃. The organic layer was washed with H₂O, dried over Na₂SO₄, conc and 7 (40 mg) was crystallized from EtOH, as colourless needles mp 116–118°. UV $\lambda_{\rm me}^{\rm MeOH}$ nm: 240; IR $\nu_{\rm ma}^{\rm KBr}$ cm⁻¹: 1745, 1710, 1660; ¹H NMR (CDCl₃): δ 1.51 (3H, s, H-10), 1.90–2.08 (3H, s, 5×OCOMe), 2.66 (1H, dd, J = 8.5 Hz and 2.0 Hz, H-9), 2.95 (1H, m, H-5), 3.71 (3H, s, COOMe), 5.71 (1H, d, J = 2.0 Hz, H-1), 7.40 (1H, d, J = 1.0 Hz, H-3). Analysed for C₂₇H₃₆O₁₅.

Acknowledgements—We are thankful to Instrumentation Section, RRL, Jammu for spectral analysis and JEOL Ltd. Japan for mass (FD) and ¹³C NMR spectra. Thanks are also due to Hiroyuki Inouye for providing the sample of mussaenoside and Yoshio Takeda for NMR and IR spectra of mussaenoside and its tetra-acetate. One of us (C.K.S.) is grateful to CSIR, New Delhi for a post-doctorate fellowship.

^{*} and † values are interchangeable.

REFERENCES

- (1976) The Wealth of India (Raw Materials) Vol. 10, p. 552. Publication and Information Directorate CSIR, New Delhi.
- Basu, N. K. and Singh, G. B. (1947) Q. J. Pharm. Pharmacol. 20, 136; Chem. Abstr. (1948) 1025.
- Ghose, T. P. and Krishna, S. (1936) J. Indian Chem. Soc. 13, 634.
- Banerji, A., Chadha, M. S. and Malshet, V. G. (1969) Phytochemistry 8, 511.
- Basu, M. M., Ray, G. K. and De, M. K. (1947) J. Indian Chem. Soc. 24, 358.
- Joshi, V., Merchant, J. R., Nadakarni, Y. V., Namboori, N. and Vaghani, D. D. (1947) *Indian J. Chem.* 12, 226.

- Gupta, G. S. and Sharma, D. P. (1973) Proc. Natl. Acad. Sci. India 43, 268; Chem. Abstr. (1975) 83, 128750a.
- 8. Rao Kodander, U., Rao Venkata, E. and Rao Venkata D. (1977) *Indian J. Pharm.* 39, 41.
- Prema, M. and Mishra, G. S. (1978) Indian J. Chem. 16B, 615.
- Gupta, G. S. and Behari Mukat (1976) Agra Univ. J. Res. Sci. 25, 63; Chem. Abstr. (1979) 90, 51414d.
- Mishra, G. S. and Subramanian, P. M. (1980) Planta Med. 38, 155.
- Takeda, Y., Nishimura, H. and Inonye, H. (1977) Phytochemistry 16, 1401.
- Chaudhuri, R. K., Affi-Yazar, F. U., Sticher, O. and Winkler, T. (1980) Tetrahedron 36, 2317.
- 14. Trim, A. R. and Hill, R. (1952) J. Biochem. 50, 310.